SOME ESTIMATES FOR NON-MICROSTATES FREE ENTROPY DIMENSION, WITH APPLICATIONS TO q-SEMICIRCULAR FAMILIES
نویسنده
چکیده
We give an general estimate for the non-microstates free entropy dimension δ∗(X1, . . . , Xn). If X1, . . . , Xn generate a diffuse von Neumann algebra, we prove that δ∗(X1, . . . , Xn) ≥ 1. In the case that X1, . . . , Xn are q-semicircular variables as introduced by Bozejko and Speicher and qn < 1, we show that δ∗(X1, . . . , Xn) > 1. We also show that for |q| < √ 2−1, the von Neumann algebras generated by a finite family of q-Gaussian random variables satisfy a condition of Ozawa and are therefore solid: the relative commutant of any diffuse subalgebra must be hyperfinite. In particular, when these algebras are factors, they are prime and do not have property Γ.
منابع مشابه
Dimitri Shlyakhtenko Lower Estimates on Microstates Free Entropy Dimension
By proving that certain free stochastic differential equations with analytic coefficients have stationary solutions, we give a lower estimate on the microstates free entropy dimension of certain n-tuples 1. In particular, for small q, q-deformed free group factors have no Cartan subalgebras. An essential tool in our analysis is a free analog of an inequality between Wasserstein distance and Fis...
متن کاملFree Entropy Dimension in Amalgamated Free Products
We calculate the microstates free entropy dimension of natural generators in an amalgamated free product of certain von Neumann algebras, with amalgamation over a hyperfinite subalgebra. In particular, some ‘exotic’ Popa algebra generators of free group factors are shown to have the expected free entropy dimension. We also show that microstates and non–microstates free entropy dimension agree f...
متن کاملNotes on Free Probability Theory
Lecture 1. Free Independence and Free Harmonic Analysis. 2 1.1. Probability spaces. 2 1.2. Non-commutative probability spaces. 3 1.3. Classical independence. 4 1.4. Free products of non-commutative probability spaces. 5 1.5. Free Fock space. 6 1.6. Free Central Limit Theorem. 8 1.7. Free Harmonic Analysis. 10 1.8. Further topics. 16 Lecture 2. Random Matrices and Free Probability. 17 2.1. Rando...
متن کاملOn Classical Analogues of Free Entropy Dimension
Abstract. We define a classical probability analog of Voiculescu’s free entropy dimension that we shall call the classical probability entropy dimension. We show that the classical probability entropy dimension is related with diverse other notions of dimension. First, it equals the fractal dimension. Second, if one extends Bochner’s inequalities to a measure by requiring that microstates aroun...
متن کاملNon-microstates Free Entropy Dimension for Groups
We show that for any discrete finitely-generated group G and any self-adjoint n-tuple X1, . . . , Xn of generators of the group algebra CG, Voiculescu’s non-microstates free entropy dimension δ(X1, . . . , Xn) is exactly equal to β1(G) − β0(G) + 1, where βi are the L Betti numbers of G.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008